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LH Approximation of Fourier Transforms and Certain 
Interpolating Splines 

By David C. Shreve 

Abstract. We extend to LP, 1 < p < -o, the L2 results of Bramble and Hilbert on conver- 

gence of discrete Fourier transforms and on approximation using smooth splines. The main 

tools are the estimates of I1]1 for linear functionals on Sobolev spaces and elementary re- 

sults on Fourier multipliers. 

1. Introduction. The purpose of this paper is to extend to LP, 1 _ p _ 00, the L1 
results of [1] on convergence of discrete Fourier transforms and on spline interpo- 
lation. An estimate for a linear functional on the Sobolev space H,,IP(RN) is 
fundamental to the work. Multipliers for Fourier transforms provide the general 
setting for the LP estimates. 

In Section 2, we give definitions and notation and prove the estimate for the 
linear functional. We study, in Section 3, the difference between discrete and 
continuous Fourier transforms. In Section 4, we consider certain spline interpolating 
functions on uniform meshes in RN. In Section 5, we mention improvements in the 
1P estimates for 1 < p < x. 

Silliman [5] has obtained the Corollary to Theorem 11 in Section 4 for p = 1, 
N = 1, /8 = 0, and the spline interpolant Su of order 2m. We wish to thank Professor 
M. A. Jodeit for a useful suggestion, and the referee for an interesting comment. 

2. Preliminaries. Let 2 be a cube in RN. For 1 p < 00, LP(2) denotes the 
space of functions u defined on 2 for which 

II UIIpQ ={ lu(x)lpdx} 

is finite. LP is the usual space of functions on all of RN. C(2) denotes the space of 
continuous functions u on 2, and 

llulIK0S = suplu(x)l. 

We define Lo to be the space of continuous functions u on RN such that u(x) -* 0 
as l xi x , and define 

Hlull. = sup lu(x)l. 
xEOaRN 

Obviously, L' is a Banach space. For] = 1, ..., N, we write Dj = -ia/axj, and 
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for a = (al, .. .,aN) we write D' = Di ... DAN. For p < x, H,,P denotes the space 
of functions u such that Dau E LP for all a with a -- m. We define 

lullp,m = E ||Daullp. 
IaI _m 

We define Hm' to be the space of functions u such that D' u E Lo for all a with 
al _- m. We define 

|ullr = E |IDau|j.. 
IaI _m 

Pk denotes the space of polynomials of total degree k. 
We define the Fourier transform of a function u on RN as 

u(,= (2,-4N/2 f u(x)e-i<x> dx 

where <x, > = ,,=1 xj1. = denotes the inverse Fourier transform of u. For h > 0, 
ZhN denotes the set {h: A = (Al,... N), j an integer}. Define Q. = { 
E RN: -_ < htj < -7,j = 1, ... , N). Xh denotes the characteristic function of Qh. 
It is well known that, if A is a measure of finite total variation on RN, then, for 
1 ' p ' x and for all u E LP, 

11H ullp* - -Clull, 

where (A * u)(x) = p(u(x - -)). The following result is easily established using 
Parseval's identity and the Cauchy-Schwarz inequality. 

THEOREM 1. Suppose i , > N/2 and f E Hm2. Then E L . 
Let 4 = X2, and j*k = 4 * * * ** where there are k 4's. Define the operator 

E by 

Eu(x) = N 4(x -)u(A). 
,LEZN 

For t E RN, define sin t = (sin (l, .. . ,sin (N) and 4(e) = JNJ Ij. Then 

(2.0) 4 - (27T) N/2 ?D(2 sin (/2)0-1( ). 

For a fixed x E RN, define the linear functional Fm(x, ) on COj by 

Fm(xu) = (4'*m1 * Eu)(x) - (4,*m * u)(x). 

For r a polynomial, we consider Fm (x, r) to be a tempered distribution. 
LEMMA 2. For r E Pm- 1, Fm(x, r) = 0. 
Proof. Write r(x) = Ilal<m aaxa. Let u be a test function. Then a straightfor- 

ward calculation shows that 

Fm(,r)(u) = (27) N/ aa{ [Da(4') a] (,)-f[Da(4'*my i] (y)d 
a u E=ZN 

and thus it follows from the Poisson summation formula that 

(2.1) Fm(Qr)(u) = (277)N E aa E [Da(4'*m)U](27g). 
IaI<m A Oo 
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Since (47*m)N ms(2) - (-m((), each term with A 0 0 in the right 
side of (2.1) is 0. 

LEMMA 3. Let 1 < p _ oo and m > N/p. There is a constant C such that 
for all u in CO, we have 

(2.2) Jj&(,u)Ip_ C I IIDaullp. 
la|=m 

Proof Let Q denote Q2, and let x E p + Q with p E ZN. Using the Sobolev im- 
bedding theorem, we have 

Fm(x, u)I C E IID 'uIphI+(m+l)Q 
Ilo<cm 

where rQ = {rx:x E Q}. Applying the Bramble-Hilbert lemma [1, Theorem 2], we 

obtain 

(2.3) IFm (x, u)l I_ C E IDu 11p, + (M+ 1)Q 
ll=m 

in view of Lemma 2. Taking pth powers and integrating, we have 

(2.4) |lFm( 
,u)llp,P+Q 

- C Y |DaUP,+(m+l)Q 
la|I=m 

Summing on p, we obtain (2.2). 
Throughout this paper, let 

N 

,q0= ][ a(~,), 
j=1 

where a is a CO function which vanishes outside (-n, T) and is 1 on [-77/2,77/2]. 
Write 'q(t ) = q(h ). 

3. Discrete and Continuous Fourier Transforms. For u a function on ZhN with 
bounded support, we define its discrete Fourier transform a by 

i7) - (2,g) N/2hN A u(hA)e-ih<A,0> 
,i E- ZN 

We shall compare the discrete and continuous Fourier transforms as h -> 0. We first 
consider only Co functions. 

LEMMA 4. Let 1 < p ? oo and m >N/p. There is a constant C such that for u in 

Co', for O-< k-< m, and for O < h < 1, 

(3.1) jj(qhia)Y - U11pk - Chm-k E || |Ilp. 
IaI =m 

Proof. It is sufficient to prove (3.1) with h = 1, since a change of variables will give 
the general result. Let u E Co . Then 

(3.2) (Eu) (') = (2-7)Nf/2J(l)a() = 4)(2 sin (/2)4'(`)i(7). 

We shall prove (3.1) first for k = 0. Obviously, 

(3.3) U I U. 
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In order to handle the second term on the right in (3.3), we shall use the following 
identity, which is easily established: 

N N 

(3.4) ][I bj-fld= H dj (bk-dk), 
1=1 1=1 jEkJ k ) kEK 

where the sum is over all choices of disjoint sets J and K such that J U K 
= {1, . .. , N} and K 0 0. Using the definition of n and (3.4), we have 

(3.5) (1q-)u = [I a(i)]J{ [1 - a((k)]}a. 

Let K = L U {l} in the sum . Then 

(1 -)u = E L[I a(j)]{H [I a((k)]}{[l -aQ,)] 1(Dm u). 

Since 1 - a is a uniformly bounded continuous function, 1 - a is the Fourier 
transform of a bounded measure. It also follows from Theorem 1 that [1 - a(Q)],/(m 
is the Fourier transform of an L' function. Thus, for 1 _ p _ x, 

N 

(3.6) 11[(1 - q)u] Ip - C I D'u Ip. 
k=1 

Now, consider the first term on the right in (3.3). Using (3.2), we have 

(a-) a- l = [(2)N/2 (Eu),,-1 

= [(27)N/2 (Eu) m-1 - Mn 

= [Fm( , u)]It(D)D-m(2 sin (/2)A. 

Obviously, ?VQ(D)'Vm(2 sin (/2)q E Co and thus, for 1 = p = x, 

(3.7) 1 1 [(a - u),] I = CIFm(,U) Ip. 

It follows from Lemma 3 and (3.7) that 

(3.8) JJ[(a - u)] 1p ? C E JlDaullp. 
IaI =m 

Combining (3.3), (3.6), and (3.8), we obtain (3.1) for k = 0. For k = 1, ..., 

apply the previous method to {Da[na - }^ = a( - O). This leads to the linear 
functional D Fm(X, .) for which Lemmas 2 and 3 are valid. 

The definition of a for u in HmP, m > N/p, may now be given. For u in HmP there 
exists a sequence {by} of Co functions such that 1 --> u in HmP as j -> xo. {my} is 
Cauchy in HmP and it follows from Lemma 4 that {(qh, )J} is a Cauchy sequence in 
HmP. Since the Fourier transform is continuous on the space of tempered distribu- 
tions, nry, has limit as j x-> , a tempered distribution with support Qh. Define 
N~ iU = lim Nq JDj on Qh and extend it by periodicity to all of RN. It is easy to see that 
limj1 77 APi is independent of the choice of the sequence {pj}, so that U is well 
defined. Note that l['qh( - j)f 1pIm > 0 asj x-> o. 
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THEOREM 5. Let 1 < p < oo and m > N/p. There is a constant C such that for 

O?IfI< m, for O<h? 1, and for all u in HP, 

II(71hZa) - UIIpk ? Chm-k 2 IiDaUlIP. 
1a1 =M 

Proof. Since CO' is dense in HP, the result follows from Lemma 4. 
The next result follows trivially from the Hausdorff-Young Theorem and from 

Theorem 5. 
COROLLARY A. Let 1 - p - 2 and m >N/p. There is a constant C such that for 

O < 1 1 < m, for O < h < 1, and for all u in HPm, 

||VO - NaU)Ilp, Chm-Ifil E |IDauiip, 

where 1/p + l/p' = 1. 

Finally, we state a consequence of the Poisson summation formula which will 
be of use in the next section. 

THEOREM 6. Let N = 1 and m ' 1. Then 

(6P*r)(() 
= (+ *M)'( + 2wt). 

~LEZ 

4. Splines in RN. In this section, we shall apply the techniques and results of 
Section 3 to a particular class of spline functions. Let Ap = h-NX2,h and A = Zh'f. If 
v is a function on A, then the function 

s(x) = hN ' 4,*k+l(x - y)v(y) 
yEA 

is said to be a spline of degree k. Regarded as a function of x, a spline of degree k 
is piecewise a polynomial of degree k and is Ck-l. Now, let u be a function on A. 
We say that s(x) is a spline interpolant of order k for u provided there exists a 
function v on A such that 

s(x) = hN E 4*k(X - y)V(y) 
yEA 

and 

s(x) = u(x) for all x E A. 

Let IP denote the space IP(A) with the usual discrete norm for 1 _ p _ xi. We shall 
establish the following inversion property. 

THEOREM 7. Let 1 _ p _ x, u E P, and let k be a positive integer. Then there 

exists a unique v E IP such that 

Su(x) = hN ' 4,*k(x-y)v(y) 
yEA 

is a spline interpolant of order k for u. 
We shall prove the next lemma and then use it to prove the theorem. 
LEMMA 8. For k = 1, 2, ...., 1/ (41*k) has absolutely convergent Fourier series. 

Proof. Clearly, it suffices to consider h = 1. Since (41*k)f is the product of N 
functions, each of a single variable, it suffices to consider N = 1. Using Theorem 6 
and (2.0), we have 
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00 

(4,*k(e ) = 1 (4,*k )( + 2X1) 

= (4,*k) ( ) + (2X) 1/2(2 sin (/2)k 
00 

A (-)l [(Q + 27TI 
)-k 

+ (Q - 21l )-k]. 
1=1 

Thus we have (:-*k(:-) > (4*k)^ ( ) ? (2)-l/2(2/ )k for -g < '. Since (4,*k r 
is periodic, we have (2*k) ? Ck > 0 everywhere. Obviously, (4*k)- has absolutely 
convergent Fourier series. The result now follows immediately from the Wiener- 
Levy theorem [3]. 

We turn now to the proof of Theorem 7. Again, it suffices to consider h = 1. 
Let a,, , E A, be the Fourier coefficients of l/(4*k)<. Define v on A by 

v(y)= E aA, u(v). 
PEA 

It follows from Lemma 8 that v E 1P. Then the function Su(x) defined in the 
theorem is obviously a spline interpolant of order k for u. The uniqueness of v is 
clear. 

We shall now show that Su(x) may be obtained directly from u. 
THEOREM 9. Let u E CO, k _ 1, and let Su be the spline interpolant of order k 

for U. Then 

(4.1) Su(x) = {[(4*) /(4,)k]i } 

Proof. It suffices to consider h = 1. By Theorem 7, there exists v E IP such that 

SU(X) = 4 A (X - y)v(y). 
yeA 

Hence 

(Su)' = (27) N/2 (*k) V and z7 = (Su) = (ho) N/2 (i*k 

It follows from Lemma 8 that 

(SU)' = ) ). 

Taking the inverse transform, we obtain (4.1). 
Now we prove the following error estimate. 
THEOREM 10. Let 1 p < oo and m >Nip. Let u E Co and let Su be the spline 

interpolant of order m for U. There is a constant C independent of u such that, for 
0 5 ? < m and for 0 < h < 1, we have 

(4.2) Iu - Su|pj ? Chm-i E |IDauU|p. 
IaI=m 

Proof. It suffices to consider h = 1. We shall first prove (4.2) for] = 0. It follows 
from Theorem 9 that 

(Su)' - U= (4,*m) 1 {(firmY(U - U) + [(*M*rn^ -- (4,*rn] } 
= (loom ) -l{(2 7)-N/2Im (. U)1 + i(4M*m) - (d' ) ]al. 
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It follows from Lemma 8 and Lemma 3 that 

(4.4) m) [ )]^ p C E IlDaull 
la|=m 

Now, consider the second term on the right in (4.3). We have 

(4.5) (p*M)U-l[(p*mf - (4*rny]U = '1 + '2 

where 

m (m)-- [(*m)f -(4,*m)r]nu and I2 = (R*m)'-1[(4,*m)"_ (Rp*Mrnr(l .) 

Since 4*m E- L' and (4p*m)' is the Fourier transform of a bounded measure, it follows 
from Lemma 8 that 

III2 ,IP C1 C|[(1-1U ,P. 

Using (3.6), we obtain 

N 

(4.6) ||I2K1p -? C E IlDm'ull 
k=1 

In order to estimate I II 1P, we shall apply (3.4) to (4*m< - (4*r)^ For 
j = 1, .. ., N, define 

A (xi) = 1, -1 < 2 xj 1, 
= 0, otherwise 

so that A1(x) = fli ij(xj). Then, with R = {1, . .. ,N} and J and K disjoint sets 
such that J U K = R and K 0 0, we have 

(*M 
- 

L (41m)"] k k U. E H (~i* 
fl [(4*m< (44m)Y 

Writing K = L U {l}, we have 

I1 (lpmf-E Ln ( , i*m]{ H [(1rk ) (4k ) ]} 

* {[(A ) -(l )' ] /( 
m 

(Dm u) 

It follows from Theorem 6 that a[(441m1 - (41 m)^ 17$"' is in CO . Thus, 

N 
(4.7) II1 IIP ? C Y ||Dk uHl. 

k=1 

Forj = 0, (4.2) follows from (4.3), (4.4), (4.5), (4.6), and (4.7). Forj = 1, ... ., m 
the previous steps are applied to Da(Su - u) for Jal = j. 

Remark. Let the hypotheses of Theorem 10 hold. Then, clearly, there is a 
constant C such that, for u E CO' and 0 < h < 1, 

||SU||p,m = clUllpm 

Thus, the definition of Su may be extended to all u E HmP. We shall still call Su the 
spline interpolant of order m for u. 
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THEOREM 11. Let 1 p o< 0 and let m >N/p. Let uEHP and let Su be the 
spline interpolant of order m for u. There is a constant C independent of u such that, 
for 0 < j < m and for 0 < h < 1, 

I1u - SuI|p,j ? Chm-i I IDa uIP. 

Proof. Since CO is dense in HP, the result follows immediately from Theorem 10 
and the previous remark. 

COROLLARY B. Let 1 < p < 2 and m > N/p. Let u E HPm and let Su be the 
spline interpolant of order m for u. There is a constant C independent of u such that, 
for 0 < IO3 < m and 0 < h < 1, we have 

l'[U- - (Su)^jHlp, _ Chm-10I E IDaUIIp. 
Ia|I=m 

5. The Case 1 < p < x. In this section, we shall show that the error estimates 
in Theorems 5 and 11 need involve only pure derivatives when 1 < p < x . 

Let I be the set of indices X such that IX = m, r, = m, and -r = 0 for 1 Aj, for 
j = L, ..., N. Let PI be the subset {r} of Pm such that DIr = 0 for all X E I. 
Bramble and Hilbert [2] have proved the following result. p = diameter of Q2. 

THEOREM 12. Let 1 < p < x and let F be a linear functional on HmP(Q2) such that 
(i) |F(u)l _ C amplal-NP |Da ulp,2 for all u E HmP(Qi), and 
(ii) F(r) = Ofor all r E PI. 

Then there exists a constant C, independent of p such that, for all u E HmP,(Q) 

IF(u)I 
? 

C, pm-N/P E IIDTUIIp,'. 
TEEI 

We shall apply this theorem with F the linear functional Fm(x, - ). The proof of 
Lemma 2 shows that Fm(x, r) = 0 for all r in PI. It follows from (2.3) that condition 
(i) of Theorem 12 is satisfied with Q = p + Q, s = 2ir/(m + 1), x E P + Q2ir. 

It is possible to show, using Hbrmander's multiplier theorem [4], that for 
1 < p < x there exists a positive constant Cpm such that, for all u E HmP, 

N 
(5.1) Cp,mlluflpm C Ilul[p + E lIDjmufl_ < Ilullpm. 

j=l 

We are now ready to state the improved error estimates for 1 < p < xc. 
THEOREM 5'. Let m > N/p. There is a constant C such that for u in HP, for 

0.?k m, and for 0<h < 1, 
N 

(5.2) ll('rmhkY - uIIk ? Chm-k 
N 

IID>ufl|| 
j=1 

Proof. It suffices to prove (5.2) for u E Co and h = 1. With k = 0, we proceed 
as in the proof of Theorem 5 and obtain 

N 
(5.3) 11(na)i - ullp = CIIFm( ,u)|Ip + C E IIDjmuIIp. 

J=1 

It follows from Theorem 12 that 

N 
(5.4) IIFm(,u)Ilp = C E IIDjmul|p. 

j=I 
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(5.2) now follows from (5.3) and (5.4) for k = 0. For k = 1, ..., m, it follows from 
(5.1) and the case already proved that it is sufficient to show that 

N N 

E |Drk[(qk7)' - u]H| ? c E |DIuH,. 
j=1 j=1 

This inequality follows from Theorem 12 and the proof of Lemma 4. 
THEOREM 1 1'. Let m > N/p. There is a constant C such that for u in HP, for 

O<k m, andfor O<h < 1, 

N 

Hu SttP~ ?Chm-k E JIDMu~ ||U - SUIIp~k C_ CAjO|D |P. 
j=1 

Proof. In view of Theorem 12 and (5.1), the result is established in a manner 
similar to that of the proof of Theorem 11. 

Finally, we note that since Xh is a Fourier multiplier with norm independent of 
h for 1 < p < oo, Theorem 5 and Corollary A for 1 < p < oo and Theorem 5' are 
valid with -qh replaced by Xh. 
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