MATHEMATICS OF COMPUTATION, VOLUME 28, NUMBER 127, JULY 1974, PAGES 779-787

I” Approximation of Fourier Transforms and Certain
Interpolating Splines

By David C. Shreve

Abstract. We extend to LP, 1 <p £ =, the L2 results of Bramble and Hilbert on conver-
gence of discrete Fourier transforms and on approximation using smooth splines. The main
tools are the estimates of [1] for linear functionals on Sobolev spaces and elementary re-

sults on Fourier multipliers.

1. Introduction. The purpose of this paper is to extend to I, 1 = p = oo, the [?
results of [1] on convergence of discrete Fourier transforms and on spline interpo-
lation. An estimate for a linear functional on the Sobolev space HZ(RY) is
fundamental to the work. Multipliers for Fourier transforms provide the general
setting for the I? estimates.

In Section 2, we give definitions and notation and prove the estimate for the
linear functional. We study, in Section 3, the difference between discrete and
continuous Fourier transforms. In Section 4, we consider certain spline interpolating
functions on uniform meshes in R". In Section 5, we mention improvements in the
I’ estimates for 1 < p < 0.

Silliman [5] has obtained the Corollary to Theorem 11 in Section 4 for p = 1,
N = 1, 8 = 0, and the spline interpolant Su of order 2m. We wish to thank Professor
M. A. Jodeit for a useful suggestion, and the referee for an interesting comment.

2. Preliminaries. Let € be a cube in RY. For 1 = p < o0, I7(Q) denotes the
space of functions v defined on 2 for which

i = { [, o7 ax}”

is finite. I is the usual space of functions on all of R¥. C(2) denotes the space of
continuous functions # on £, and

Jullos = sup ().

We define L§ to be the space of continuous functions ¥ on R" such that u(x) — 0
as | x| = oo, and define
llulbe = sup |u(x)].
xERVN
Obviously, Lg is a Banach space. Forj = 1, ..., N, we write D; = —id/dx;, and
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fora = (ay,...,ay) we write D* = D - .- DI~ For p < o0, HY denotes the space
of functions u such that D*u € I* for all a with |a] = m. We define

[ullpm = lE D% ull,.

a|=m

We define H,? to be the space of functions u such that D*u € Ly for all a with
la] = m. We define

lulbom = = (1D ulks.

la|=m
P denotes the space of polynomials of total degree k.
We define the Fourier transform of a function u on R" as
#(€) = )™ [ u(x)e = dx

where (x,£) = 3V, x;¢. i denotes the inverse Fourier transform of u. For >0,
Zy denotes the set {ph:p = (w,...,uy), p, an integer}. Define 0, = {¢
ERV: —m < h§ =mj=1,... ,N}. x» denotes the characteristic function of Os.
It is well known that, if p is a measure of finite total variation on R¥ , then, for
l =p=owandforallu € I?,

e = ull, = Cllull,,

where (u * u)(x) = p(u(x — -)). The following result is easily established using
Parseval’s identity and the *auchy-Schwarz inequality.

THEOREM 1. Suppose : . > N/2 andf € H}. Then f € L.

Let y = xa, and [** = ¢ % - % § where there are k ¥'s. Define the operator
E by

Eu() = 3 4l = pulp)

For £ € RY, define sin £ = (sin &, ...,sin £y) and ®(¢) = IT)Z1 &. Then
(2.0) UE) = 2m) V2 ®(2 sin £/2)D7'(£).

For a fixed x € R", define the linear functional ,(x, ) on C§° by

E(xu) = (0" o+ Eu)(x) — @™ * w)(x).

For r a polynomial, we consider E,(x,r) to be a tempered distribution.

LEMMA 2. For r € P, E,(x,r) = 0.

Proof. Write r(x) = 3, <, aax*. Let u be a test function. Then a straightfor-
ward calculation shows that

EGNG = 0" S af S 05wl () — [ (D@ af () @}
o ®
and thus it follows from the Poisson summation formula that

@1) EGAW = 0n 3 a3 DG il2m).
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Since (y*™)"(¢) = (2m)™N/2®™(2sing/2)d "™ (¢), each term with u # 0 in the right
side of (2.1) is 0.

LEMMA 3. Let 1= p < o and m > N/p. There is a constant C such that
forall u in C, we have

(2.2) IE.Cwll, = ¢ 2, 1%l

Proof. Let Q denote Q,, andlet x Eu+ Q with VAR Using the Sobolev im-
bedding theorem, we have

IF,( w)l=C > 1D%Il

M+ (m+1
i< m p,u+(m+1)Q

where rQ = {rx:x € Q}. Applying the Bramble-Hilbert lemma [1, Theorem 2], we
obtain

2.3) IF,Gw)=C 3 1D%I, u+ m+1)0

lal=m

in view of Lemma 2. Taking pth powers and integrating, we have
(2:4) 1B t)lpuee = CHZ_ 1D ullf s ms .

Summing on u, we obtain (2.2).
Throughout this paper, let

N
n) = T a(t).
where a is a C§° function which vanishes outside (—,7) and is 1 on [—7/2,7/2].
Write 14(§) = n(h§).
3. Discrete and Continuous Fourier Transforms. For u a function on Z} with
bounded support, we define its discrete Fourier transform # by

€)= @)y VY S u(hp)e hmd),
peZN

We shall compare the discrete and continuous Fourier transforms as 4 — 0. We first
consider only C¢° functions.
LEMMA 4. Let 1< p < and m > N/p. There is a constant C such that for u in

Co, for 0=k=m, and for 0<h =1,
(3.1) [(a@d)” — ullpp = Ch™* 3 || Dull,.

la|=m

Proof. 1t is sufficient to prove (3.1) with A = 1, since a change of variables will give
the general result. Let u € Cg°. Then

(32) (Eu)' (§) = @m"Y*PE)a(€) = (2 sin £/2)7'(¢)a(¢).
We shall prove (3.1) first for k = 0. Obviously,

(3.3) nid—a = (i@— d)n— (1 —n)
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In order to handle the second term on the right in (3.3), we shall use the following
identity, which is easily established:

(64 To-14-5(14) I 6

e ke

where the sum is over all choices of disjoint sets J and K such that J UK
={1,...,N}and K # . Using the definition of n and (3.4), we have

() (=i =2 | 11 a)]{ 1,11 - g0}

Let K = LU{/} in thesum . Then

(1 -wi =3[ T a@) {1 1 - ai} - ae/erora

Since 1 — a is a uniformly bounded continuous function, 1 — a is the Fourier
transform of a bounded measure. It also follows from Theorem 1 that[1 — a(¢,)] /4"
is the Fourier transform of an L' function. Thus, for 1 = p = oo,

N
(36) A =yl ll, = € Z 1D ull,
Now, consider the first term on the right in (3.3). Using (3.2), we have
@ — a)n = [m) " (Ew)"§ — dln

= [@m) VA (Ewy =t = maly ™™
= [E(.w)] @"(§)®™(2 sin £/2)n.

Obviously, ®™(£)® (2 sin £/2)n € C§° and thus, for 1 = p = o,

(3.7) @ — @)l [l, = CllEC, 0,
It follows from Lemma 3 and (3.7) that
(3.8) @ — @)n]" ll, = C||E= 1D ull,.

Combining (3.3), (3.6), and (3.8), we obtain (3.1) for k = 0. For k = 1,..., m,
apply the previous method to {D*[ni — 4] }" = £%(y# — ). This leads to the linear
functional D*F,(x, ) for which Lemmas 2 and 3 are valid.

The definition of & for u in HZ, m > N/p, maynow be given. For u in H} there
exists a sequence {¢;} of C¢° functions such that ¢; = u in Hf as j — oo. {g;} is
Cauchy in H} and it follows from Lemma 4 that {(n,¢;)" } is a Cauchy sequence in
H? . Since the Fourier transform is continuous on the space of tempered distribu-
tions, n,@; has limit as j — co, a tempered distribution with support Q,. Define
Nyt = lim 1 M <I> on Q, and extend it by periodicity to all of R". It is easy to see that
llml_m Nh «p] is independent of the choice of the sequence {wl} so that u is well
defined. Note that ||[74(@ — &)] ||, — 0 asj — oo.
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THEOREM 5. Let 1 < p = and m > N/p. Thereisa constant C such that for
0=IBl=m, for 0<h<1, and forall u in H?,

(nad)” — ullpse = Ch'""‘llg 1D ull,.
Proof. Since C§° is dense in HZ, the result follows from Lemma 4.
The next result follows trivially from the Hausdorfi-Young Theorem and from
Theorem 5.
COROLLARY A. Let 1=p =72 and m >N/p. Thereis a constant C such that for

0 <IBlzm, for 0<h <1, and forall u in H?,
&8 — mpit)ll, . = ChmI# Hz_ 1Dull,,

where 1/p + 1/p’ = 1.

Finally, we state a consequence of the Poisson summation formula which will
be of use in the next section.

THEOREM 6. Let N = 1 and m = 1. Then

@E) = 3, @) €+ 2ma)

4. Splines in R”. In this section, we shall apply the techniques and results of
Section 3 to a particular class of spline functions. Let ¢ = h™"x,,, and A = Z} . If
v is a function onA, then the function

(0 = A 3 9 (x = ()

is said to be a spline of degree k. Regarded as a function of x, a spline of degree k
is piecewise a polynomial of degree k and is C¥'. Now, let # be a function on A.
We say that s(x) is a spline interpolant of order k for u provided there exists a
function v on A such that

) = A 3 94 x = ()

and
s(x) = u(x) forall x € A.

Let /” denote the space /7(A) with the usual discrete norm for 1 = p = oo. We shall
establish the following inversion property.

THEOREM 7. Let | = p = o0, u € I?, and let k be a positive integer. Then there
exists a unique v € [” such that

Su(x) = 1" 3, 9 = ()

is a spline interpolant of order k for u.

We shall prove the next lemma and then use it to prove the theorem.

LEMMA 8. For k = 1,2, ..., 1/(Y**)” has absolutely convergent Fourier series.

Proof. Clearly, it suffices to consider & = 1. Since (y**)” is the product of N
functions, each of a single variable, it suffices to consider N = 1. Using Theorem 6
and (2.0), we have
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@E) = 3 @€+ 20)
= (™) (¢) + 2m) /(2 sin £/2)
: ,2. (—1)¥[(E + 271 + (£ — 200) ],

Thus we have (y**)7(¢) = Y**) (¢) = 2n) "*(2/m)* for —m < & = 7. Since (Y**)~
is periodic, we have (y**)” = C, > 0 everywhere. Obviously, (¢**)™ has absolutely
convergent Fourier series. The result now follows immediately from the Wiener-

Levy theorem [3].
We turn now to the proof of Theorem 7. Again, it suffices to consider &4 = 1.
Let a,, p € A, be the Fourier coefficients of 1/(y**)”. Define v on A by

V() = 3 @),

It follows from Lemma 8 that v € /?. Then the function Su(x) defined in the
theorem is obviously a spline interpolant of order k for . The uniqueness of v is
clear.

We shall now show that Su(x) may be obtained directly from u.

THEOREM 9. Let u € C°, k = 1, and let Su be the spline interpolant of order k
for u. Then

4.1) Su(x) = {[(4**)"/ @) la}".
Proof. 1t suffices to consider 2 = 1. By Theorem 7, there exists v € /” such that
Su(x) = 2 Y**(x — y(y).
yeA
Hence
(Su)” = Qo)M*W*)' 5 and a = (Su)~ = Qm)V2(Y**)7v.
It follows from Lemma 8 that
(Su)” = [(¥*)"/(W**) ]a.

Taking the inverse transform, we obtain (4.1).

Now we prove the following error estimate.
THEOREM 10. Let 1=<p < and m>N/p. Let u € Cy and let Su be the spline

interpolant of order m for u. There is a constant C independent of u such that, for
0<j<m and for 0<h =<1, we have

4.2) lu = Sull,; = Ch™7 3 [|D%ull,.

la|=m

Proof. It suffices to consider # = 1. We shall first prove (4.2) forj = 0. It follows
from Theorem 9 that

(Su)” —a = @)~ @) @ —a) + [@*™) — @)1}

4.3) R X
= W) e RG] + (@) — @) )
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It follows from Lemma 8 and Lemma 3 that

(4.9) K@)~ BCO Y |, = C|E 1D%ull,.

a|=m

Now, consider the second term on the right in (4.3). We have

(4.5) @)@ - @)l =5+ b
where
h= @) @) = @) Inid and b = @) @) - @) 11 - )i

Since ¢*™ € L' and (*") is the Fourier transform of a bounded measure, it follows
from Lemma 8 that

11, = I —nil” [l
Using (3.6), we obtain

N
“6) 1220, = € 3 IDFul,.

In order to estimate |/,],, we shall apply (3.4) to (¥*")” — (y*")". For
Jj=1,..., N, define

%(x,) = 1, _1 < 2x]‘ é 1,
=0, otherwise

so that Y(x) = [TX1 ¢;(x;). Then, with R ={1,...,N} and J and K disjoint sets
such thatJ U K = R and K # ), we have

F= s [ Den | I - @l

kEK

Writing K = L U {/}, we have

n=wm s [T |{ e - @)
A = W) /&M (Druy
It follows from Theorem 6 that a[(y7™)~ — (™) ]/&" is in C§°. Thus,

N
@7 17l = € 3 108 ul,.

For j = 0, (4.2) follows from (4.3), (4.4), (4.5), (4.6), and (4.7). Forj =1, ..., m,
the previous steps are applied to D*(Su — u) for |a| = j.

Remark. Let the hypotheses of Theorem 10 hold. Then, clearly, there is a
constant C such that, foru € Ciand 0 < h = 1,

IStllpm = Cllaellpm-

Thus, the definition of Su may be extended to all u € HJ. We shall still call Su the
spline interpolant of order m for u.
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THEOREM 11. Let 1S p < andlet m>N/p. Let uE€HP, andlet Su be the
spline interpolant of order m for u. There isa constant C independent of u such that,
for 0Zj=m and for 0<h =<1,

e = Sullp, = Ch™ = |[D%ull,.
Proof. Since Cy° is dense in HY, the result follows immediately from Theorem 10
and the previous remark.
COROLLARY B. Let 1=p <2 and m > N/p. Let u € HP, andlet Su be the
spline interpolant of order m for u. There is a constant C independent of u such that,
for 0 Z1Bl<m and 0<h =1, we have

€62 — (56" Ulpr = CH 8 3 107

5. The Case 1 < p < 0. In this section, we shall show that the error estimates
in Theorems 5 and 11 need involve only pure derivatives when 1 < p < 0 .

Let I be the set of indices 7 such that |7| = m, 7,=m, and 7,=0 for I#j, for
j=1,..., N. Let P, be the subset {r} of B, such that D'r = 0 for all 7 € L
Bramble and Hilbert [2] have proved the following result. p = diameter of .

THEOREM 12. Let 1 < p < oo and let F be a linear functional on HE(Q) such that

() |[F| = C Span 0¥ [ D%ul0 for all u € HL(R), and

(ii) F(r) = 0 forall r € P;.

Then there exists a constant C, independent of p such that, for all u € HE(Q),

|FG| = G 3 [1Dula.

We shall apply this theorem with F the linear functional F, (x,-). The proof of
Lemma 2 shows that F, (x, r) =0 forall r in P,. It follows from (2.3) that condition
(i) of Theorem 12 is satisfied with Q =u+ Q;, s =2n/(m + 1), x Ep + Q,,.

It is possible to show, using Hormander’s multiplier theorem [4], that for
1 < p < oo there exists a positive constant C,,, such that, for all u € H?,

N
(.1) Cp,mnunp,m = ”u”p +j§l ”D;"u”p = ”u“p,m-
We are now ready to state the improved error estimates for 1 < p < oo.
THEOREM 5. Let m > N/p. There is a constant C such that for u in HE,, for

O0=k<m, and for 0<h =1,

N
(5:2) ms@)” = ullps = Ch* 3 D] ull,.

<

Proof. 1t suffices to prove (5.2) for u € C® and h = 1. With k = 0, we proceed
as in the proof of Theorem 5 and obtain

N
(5.3) i)™ = ull, = CIECWll, + € 3 (1D ul,.
p=

It follows from Theorem 12 that

(54 5.l = € Dl



LP APPROXIMATION OF FOURIER TRANSFORMS 787

(5.2) now follows from (5.3) and (5.4) for k = 0. For k = 1, ..., m, it follows from
(5.1) and the case already proved that it is sufficient to show that

N N
3, 1Dty = ull, = € 3 1D ul,.

This inequality follows from Theorem 12 and the proof of Lemma 4.
THEOREM 11'. Let m > N/p. There is a constant C such that for u in HP ., for
0<k=m, andfor 0<h <1,

N
lu — Sull,x = Ch’""‘lgl D" ull,-

Proof. In view of Theorem 12 and (5.1), the result is established in a manner
similar to that of the proof of Theorem 11.

Finally, we note that since x;, is a Fourier multiplier with norm independent of
hfor 1 < p < oo, Theorem 5 and Corollary A for 1 < p < oo and Theorem 5’ are
valid with 7, replaced by x.
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